Requirements and Challenges of EUV mask inspection for 22nm HP and beyond Brian BC Cha*, Jihoon Na, Gisung Yoon, Wonil Cho, Inkyun Shin, Han-Ku Cho Semiconductor R&D Center, Samsung Electronics Co., Ltd. 17 Oct. 2011 ### **Outline** - Background - Device roadmap, EUV mask defect requirements - EUV mask inspection challenges - Requirements and current status of EUV mask inspection - Sensitivity - Inspectability - Throughput time - Other considerations (DB inspection, Defect review, Timing) - Risk estimate of inspection tool - Conclusions ## **Device roadmap** - 1st EUV HVM insertion is expected between 2013 and 2015 - DRAM device roadmap is at least 1 year ahead of Logic device roadmap Han Ku Cho (Samsung), 2011 EIDEC Symposium Year for HVM ## **EUV** mask defect requirements | | | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |----------------------|-----------------------|------------|-------------|-------|--------------|-----------------|------| | Device no | de (DRAM, HVM) | D2X- | -a | D2X-b | | D1X | | | EU | V scanner | | 1 st | Gen. | | 2 nd | Gen. | | | Particle Spec (nm) | 60 | 23 | 23 | 23 | 15 | 11 | | BI | randicie Spec (IIIII) | SiO2 | | | SEVD | | | | (Blank | 19Xnm | | | | | | | | Inspection) | 13.5nm | | | | | | | | | Defect Spec (nm) | 40 | | 30 | | 20 | <10 | | | , | Experiment | | | Simulation 8 | & Estimation | | | PI | 19X nm | | | | | | | | (Pattern Inspection) | 13.5 nm | | | | | | | | | E-beam | | | | | | | - Blank particle spec. should meet ≤ 10 printable defects in each node - Pattern defect spec. is based on printability # **Keywords for EUV mask inspection** #### Patterned Mask Inspection Considerations - Detection Limit (Sensitivity, capture rate) - Inspectability (false rate, nuisance) - Optimization of blank stack with inspection conditions - Throughput time - Defect of interests - Focus control - Illumination optimization - Defect printability based on wafer printing - Tool Roadmap alignment with Device roadmap (timing) - Inspection light source (19Xnm, E-beam, 13.5nm) #### Blank Mask Inspection Considerations - Sensitivity - Position Accuracy - Inspection time - Inspection light source (19Xnm, 13.5nm) - Dark field/Bright field ## Inspection challenges !! Inspection environments are getting worse!! CoO increase!! **Design shrink** Sensitivity HP45nm Blank A **False** 0038779300 Pixel size **Throughput time** ~8hrs HP32nm ~70nm Illumination dependency Blank B HP22nm ~6hrs **Blank C** ~40nm HP16nm ~4hrs Inspection time HP11nm ~30nm Mask noise, System noise → False increase # **Sensitivity** | | Descriptions | |-----------------------|---| | Requirements | • 30nm HP \rightarrow ~40nm (4X) , 22nm HP \rightarrow ~30nm (4X)
• 16nm/11nm HP \rightarrow ?? | | Current Status | 19X nm inspection light source shows reasonable capability at 30nm HP but still challenging at 22nm HP Specific EUV blank stack is critical to secure 19X inspection capability. Tone reverse with 19X nm causes issues No available data beyond 16nm HP | | Expected Risks | Technology gap between 19X nm and Actinic is apparent Timing gap is most critical before Actinic is used | | Focus Area | Extendibility of 19X nm inspector with various optical enhancement technology (OAI, High NA, polarization, etc) Inspection simulation capability down to 16nm HP EUV blank optimization Review of the necessity of E-beam inspection | # Imaging property depending on wavelengths **Inspection image** Each tool shows different result with a same defect. **CD-SEM image** Cut defect case (intrusion) Jihoon Na (Samsung), 2011 BACUS Symposium ### **Tone reversal** Signal behavior with different pattern size (length 1 um, width 400nm ~70nm) – tone reversal is clearly seen. # **Detection sensitivity – L/S pattern** #### **193nm Inspection** | Optic mode | Low sigma | High sigma A | High sigma B | Dipole | |------------|-----------|--------------|--------------|--------| | Shape | | | | | | 30nm | HP L/S | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |-----------|---------------------|------|------|------|------|---------|--------|--------|--------|--------|--------|--------|----| | | Printability (Mea.) | BR | BR | BR | BR | BR | 82.1nm | 76.5nm | 59.4nm | 44.8nm | 38.0nm | 32.0nm | | | | Low sigma | 100% | 100% | 92% | 100% | 88% | 100% | 100% | 100% | 100% | 100% | 60% | | | Extrusion | High sigma A | 100% | 100% | 88% | 40% | 0% | 0% | 4% | 56% | 80% | 92% | 28% | | | | High sigma B | 100% | 100% | 100% | 100% | 72% | 20% | 16% | 52% | 80% | 64% | | | | | Dipole | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 88% | | | | | Printability | Cut | Cut | Cut | Cut | 100.3nm | 81.8nm | 68.7nm | 56.4nm | 42.0nm | 32.4nm | | | | | Low sigma | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 72% | 24% | | | Intrusion | High sigma A | 100% | 100% | 100% | 100% | 100% | 100% | 96% | 84% | 60% | 28% | | | | | High sigma B | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 88% | 64% | | | | | | Dipole | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 96% | 24% | | | | 24nm | 24nm HP L/S | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |-----------|---------------------|------|------|------|------|--------|--------|--------|--------|--------|--------|--|----| | | Printability (Sim.) | BR | BR | BR | BR | 65.3nm | 54.1nm | 49nm | 39.8nm | 32.2nm | 29.2nm | | | | | Low sigma | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 96% | 84% | | | | | Extrusion | High sigma A | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 96% | 24% | | | | | High sigma B | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 40% | | | | | | | Dipole | 64% | 48% | 36% | 20% | | | | | | | | | | | Printability (Sim.) | CUT | CUT | CUT | CUT | 68.1nm | 58.6nm | 53.3nm | 41.8nm | 38.2nm | 29.1nm | and the same of th | | | | Low sigma | 100% | 100% | 100% | 100% | 100% | 100% | 96% | 52% | | 0.000 | | | | Intrusion | High sigma A | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 84% | | | | | | | High sigma B | 100% | 88% | 72% | 92% | 96% | 56% | | | | | | | | | Dipole | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 88% | 28% | | # O III N O | | **ELECTRONICS** 10 # Sensitivity dependency of illumination conditions #### 30m HP L/S 193nm Inspection | IC | , | Low sigma | High sigma A | High sigma B | Dipole | |---------------|-----------|--------------|--------------|--------------|-----------| | Modulatio | n depth | Not bad Bad | | Good | Very good | | Defect | Extrusion | Not bad | Not bad | Good | good | | signal | Intrusion | Very good | Good | Good | Very good | | Detection | Extrusion | Very good | Bad | Bad | Very good | | sensitivity | Intrusion | Very good | Good | Good | Very good | | Tone reversal | | Not reversed | Reversed | Reversed | Reversed | #### 24nm HP L/S | IC | | Low sigma High sigma A | | High sigma B | Dipole | |------------------|-----------|------------------------|-----------|--------------|-----------| | Modulation depth | | Bad | Bad | Good | Good | | Defeat gignel | Extrusion | | Good | Not bad | Bad | | Defect signal | Intrusion | Very good | Good | Good | Very good | | Detection | Extrusion | Very good | Very good | Not good | Bad | | sensitivity | Intrusion | Good | Good | Not good | Good | | Tone rev | versal | Not reversed | Reversed | Reversed | Reversed | # Inspectability | | Descriptions | |-----------------------|---| | Requirements | Less than ~10% of total defect counts for HVM | | Current Status | Inspection image of 19X nm inspection tool is not enough to differentiate false/nuisance from real defects. SEM verification is additionally needed. 30nm HP → 30~50% for worst case but getting better 22nm HP → not enough data yet (just started) 16/11nm HP → no data yet | | Expected Risks | Increase of mask noise from mask surface damage due to
many cleaning events Dependency of Pattern/DOI/ illumination condition is
increasing Increase of inspectability-sensitivity tradeoffs | | Focus Area | Enhancement of focus calibration Study of mask error terms (LER, surface roughness) Development of more effective filtering algorithm Optimization of inspection conditions based on blank stack and illumination conditions | ## **False counts** 193nm inspection shows many false counts. # **Throughput time** | | Descriptions | |-----------------------|--| | Requirements | • 32/22nm HP : ~4hrs per mask
• 16/11nm HP : ~6hrs per mask | | Current Status | 32/22nm HP with ~50nm pixel shows 3~5 hrs TPT when single inspection is enough TPT depends on pixel size and computing environment | | Expected Risks | Double inspection due to combination of DOI and illumination conditions (maybe ~ 10 hrs needed) → CoO increase Increase of false rate → increase of TPT DB modeling difficulties → increase of computing time | | Focus Area | Study of the necessity of double inspection based on defect type, pattern type and tech. node DB modeling enhancement Computing power enhancement to handle image processing Possibility of new position of e-beam inspection against 19X nm inspection | # **EUV DB Inspection** | | Descriptions | |-----------------------|--| | Requirements | • Equivalent sensitivity / false rate / TPT with DD inspection | | Current Status | DB inspection of HP32 shows sensitivity differences and some missing defects | | Expected Risks | Sensitivity loss False counts increase TPT loss Repetitive DB modeling might require when new blank is used | | Focus Area | Enhanced EUV DB algorithmStudy of Flare level | # **EUV DB Inspection** - First try of full EUV mask DB inspection with 30nm HP at 193nm inspector - Showed sensitivity differences between DD and DB - Some missing defects observed. ## Improvement of EUV DB inspection ## Improved Contrast & Defect Signal Programmed Pindot on line space pattern # Defect Review / Classification / Disposition / | | Descriptions | |-----------------------|---| | Requirements | Good inspection image to judge defect severity | | Current Status | Hard to find defect on inspection image and take time to
judge defect disposition to confirm final mask qualification Need additional SEM review | | Expected Risks | TAT increase due to SEM review of every defects Wrong judge of mask defect | | Focus Area | Study of simulation capability for defect review and disposition (ex. 3D CD SEM) Enhancement of inspection optic | ## **Defect Review** More visibility of defect is needed. Difficulties of defect review **Defect** Ref. Diff. Predictability of defect is needed. Defect review using simulation w/ SEM image Vikram Tolani (Luminscent), 2011 BACUS Symposium # **Timing** - Alternatives to close EUV inspection technology gap - Extend 19X nm inspector - Pull in Actinic inspector - Put more efforts in E-beam inspector ### **Risk Estimate** | | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | Comments on high, med risk | |------------------------------------|------|------|------|------|------|------|---| | Sensitivity | med | med | med | high | high | low | - 2014~2015 : 19Xnm limitation | | Inspectability | high | high | low | high | high | low | - 2011~2012 : immaturity of 19X nm inspection | | Throughput | low | med | med | high | high | med | - Need of double inspection
- Smaller pixel with actinic | | Contam.
Control | low | low | low | high | high | med | - Moving toward HVM for EUVL | | Review/
Class. /
Disposition | high | high | high | high | med | low | - Lack of visibility of 19X nm inspection tool | ### Industry Focus - 2011 ~ 2013 : Defect review / classification / disposition / false rate reduction - 2014 ~ 2015 : Sensitivity / TPT / Contamination control ## **Conclusions** - EUV pattern mask inspection will be much more difficult in 3~4 yrs. - Cost of fab operation of EUV pattern mask inspector will be higher than ever due to lack of sensitivity, increase of false rate which cause loss of Inpsetion TPT. - Combination of OAI and polarized illumination will give more advantage for EUV pattern mask inspection but it might also give need of double inspection for specific defects of interests. - Thus, extendibility of 19X nm inspector needs to be clarified. - In addition, industry also needs to take e-beam inspection into account for bridging or replacing technology for 22nm HP and beyond. - Risk estimates need to be continuously studied with inspection tool suppliers and EUV mask makers. ## **Acknowledgements** - My co-author and Samsung's mask team engineers - Many inspection suppliers for their hard work to close the gap for EUV mask.